National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
Highly ordered cobalt oxide thin films for model catalysis
Ronovský, Michal ; Mysliveček, Josef (advisor) ; Švec, Martin (referee)
Hydrogen processing is becoming increasingly important not only in the production of electricity but also during its accumulation. One of the energy storage options are liquid organic hydrogen carriers (LOHC). The main drawback of LOHC is the need for a large amount of thermal energy to release molecular hydrogen. We can bypass this issue using heterogeneous catalysis by transferring hydrogen from LOHC to acetone and using the produced 2-propanol (IPA) in the fuel cell. This innovative strategy of getting electri- cal energy from LOHC can be potentially energetically neutral. In this work, we studied highly ordered Co3O4(111) model catalysts for IPA oxidation in the as-prepared state and enhanced with platinum (Pt) nanoparticles. Catalysts were prepared by Physical Vapour Deposition (PVD) and further investigated by means of Low Energy Electron Diffrac- tion (LEED), X-ray Photoelectron Spectroscopy (XPS), Scanning Tunneling Microscopy (STM) and Temperature Programmed Desorption (TPD). The nucleation process of Pt on the as-prepared Co3O4(111) surface was studied by depositing low amounts 0.04 and 0.13 monolayer (ML) of Pt, that create clusters as small as 2 or 3 atoms with no need for a special nucleation site. We have identified the formation of Pt-induced defects in the atomically flat cobalt oxide...
Highly ordered cobalt oxide thin films for model catalysis
Ronovský, Michal ; Mysliveček, Josef (advisor) ; Švec, Martin (referee)
Hydrogen processing is becoming increasingly important not only in the production of electricity but also during its accumulation. One of the energy storage options are liquid organic hydrogen carriers (LOHC). The main drawback of LOHC is the need for a large amount of thermal energy to release molecular hydrogen. We can bypass this issue using heterogeneous catalysis by transferring hydrogen from LOHC to acetone and using the produced 2-propanol (IPA) in the fuel cell. This innovative strategy of getting electri- cal energy from LOHC can be potentially energetically neutral. In this work, we studied highly ordered Co3O4(111) model catalysts for IPA oxidation in the as-prepared state and enhanced with platinum (Pt) nanoparticles. Catalysts were prepared by Physical Vapour Deposition (PVD) and further investigated by means of Low Energy Electron Diffrac- tion (LEED), X-ray Photoelectron Spectroscopy (XPS), Scanning Tunneling Microscopy (STM) and Temperature Programmed Desorption (TPD). The nucleation process of Pt on the as-prepared Co3O4(111) surface was studied by depositing low amounts 0.04 and 0.13 monolayer (ML) of Pt, that create clusters as small as 2 or 3 atoms with no need for a special nucleation site. We have identified the formation of Pt-induced defects in the atomically flat cobalt oxide...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.